US009361173B2

a2 United States Patent 10) Patent No.: US 9,361,173 B2
Pericin 45) Date of Patent: Jun. 7, 2016
(54) AUTOMATED UNPACKING OF PORTABLE 5,802,900 A * 4/1999 Ginterc...co..... GO6F 21/10
EXECUTABLE FILES _ 726/26
5,892,904 A * 4/1999 Atkinson et al. 726/22
3k
(75) Inventor: Tomislav Pericin, Sremska Mitrovica g:ggg:;zg ﬁ " ﬁﬁggg iomeretal G067Fl;/11/g51§
(RS) 714/38.1
5,983,366 A * 11/1999 King 714/38.13
(73) Assignee: Reversing Labs Holding GmbH, 6,026,235 A * 2/2000 Shaughnessy 717/127
Zurich (CH) 6,202,199 B1* 3/2001 Wygodny et al. T17/125
6,367,012 B1* 4/2002 Atkinson et al. 713/176
3k
(*) Notice: Subject to any disclaimer, the term of this 6,802,006 B1* 10/2004 .BOdrOV """"""""""""" 713187
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 538 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 12/846,044 P 1148417 A2 10/2001
. EP 1594062 A2 11/2005
(22) Filed: Jul. 29, 2010 .
(Continued)
(65) Prior Publication Data OTHER PUBLICATIONS
US 2011/0035731 Al Feb. 10, 2011 Mario Vilas , “examply10.py” , Copyright Mario Vilas , 2009 ,
. L. <http://pypeelf.googlecode.com/svn/branches/third-party/winap-
Related U.S. Application Data pdbg-1.2/examples/debugging/example10.py> , pp. 1-3.*
(60) Provisional application No. 61/229.497, filed on Jul. (Continued)
29, 2009.
(51) Int.Cl Primary Examiner — Thuy Dao
G0‘6F 5/445 (200601) Assistant Examiner — Samuel Haylm
GO6F 1107 (2006.01) (74) Allorney, Agenl, or Firm — Brian J]. Colandreo;
(52) US.Cl Michael T. Abramson; Holland & Knight LLP
CPC GO6F 11/0793 (2013.01); GO6F 11/0715
(2013.01), GO6F 110751 2013.01) 7 ABSTRACT
(58) Field of Classification Search Automated unpacking of a portable executable file includes
None setting a debugging breakpoint at an original entry point
See application file for complete search history. address of a packed portable executable file. A debugging
process is executed for the packed portable executable file to
(56) References Cited obtain a debugged portable executable file in memory. One or
more of import address table data and relocation table data are
U.S. PATENT DOCUMENTS collected during execution of the debugging process for the
3.987.420 A * 10/1976 Badagnani GOSE 3/0227 packed portable executable file. The debugged portable
e EOARL oo 712/E9.0%2 executable file in memory is copied to a storage medium, and
4,533,997 A * 81985 Furgerson GOGF 11/362 the debugging process is terminated.
703/21
5,812,848 A * 9/1998 Cohenccoccovvvevcennnnn 719/331 12 Claims, 4 Drawing Sheets

162
initialize debugging
process

set break point at original
eniry paint

determine original entry
point address

'/160

executs debugging

collect import address
table data / relocation
table data

:

P

|

set dabugging breakpoints | 164
at table filing code

copy debugged PE flle In
memory to storage device

paste tablss into
debugged PE file

realign debugged PE file

terminate debugging at
original entry point

-
<5 add section to debugged | °°
1 PEfle

US 9,361,173 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,174,320 B2* 2/2007 Rothrock ... 705/58
7,181,603 B2* 2/2007 Rothrocketal. 713/1
7,299,408 B1 11/2007 Daconta et al.
7,349,931 B2* 3/2008 Horne GOGF 21/562
7,594,136 B2 9/2009 Kerner et al.
7,814,544 B1* 10/2010 Wilhelmccccooevnnnae 726/22
7,996,904 B1* 82011 Chiuchetal. 72624
8,037,536 B2* 10/2011 Treadwell et al. .. 726/25
8,042,179 B2* 10/2011 Shoji et al. 726/22
8,161,548 B1* 4/2012 Wancccccvvvvrennnn. 726/22
8,510,615 B2 8/2013 Tredoux
8,627,302 B2* 1/2014 Chenetal. ..o 717/158
8,782,615 B2* 7/2014 Kollbergetal. 717/135
8,826,071 B2 9/2014 Pericin
2002/0087914 Al 7/2002 Sarra
2003/0040898 Al* 2/2003 McWilliamsetal. 703/21
2003/0070087 Al* 4/2003 Gryaznov GOGF 21/56
726/24
2003/0079145 Al* 4/2003 Kouznetsov GOGF 21/56
726/22
2003/0177371 Al* 9/2003 Rothrock etal. 713/189
2003/0191944 Al* 10/2003 Rothrock ... 713/182
2003/0233574 Al* 12/2003 Kouznetsov GOGF 21/56
726/23
2004/0024995 Al* 2/2004 Swaine GOGF 11/25
712/227
2004/0049770 Al 3/2004 Chrysanthakopoulos et al.
2004/0181672 Al* 9/2004 Ferri ...ccocovvevnnne. GOGF 21/51
713/176
2005/0040944 Al 2/2005 Contestabile
2005/0132356 Al 6/2005 Cross et al.
2005/0172337 Al 8/2005 Bodorin
2006/0236397 Al* 10/2006 Horneccee. 726/24
2007/0101435 Al* 5/2007 Konankaetal. 726/27
2007/0130421 Al 6/2007 Ahmad et al.
2007/0214461 Al* 9/2007 Glatronetal. 719/321

2007/0260919 Al
2008/0209551 Al
2009/0013405 Al
2009/0126012 Al*
2009/0133125 Al
2010/0005054 Al
2010/0024036 Al*
2010/0131932 Al
2010/0177250 Al
2011/0029805 Al
2011/0066651 Al
2013/0198119 Al*

11/2007 Kerner
8/2008 Treacy
1/2009 Schipka
5/2009 Treadwell etal. 726/22
5/2009 Choi
1/2010 Smith et al.
1/2010 Morozov et al. 726/26
5/2010 Kato et al.
7/2010 Hoshino et al.
2/2011 Pericin
3/2011 Pericin
8/2013 Eberhardtetal. 706/12

FOREIGN PATENT DOCUMENTS

™ 200307208 B 12/2003
™ 200820678 A 5/2008
OTHER PUBLICATIONS

“kbandla/ImmunityDebugger” , GitHub , 2008 , <https://www.
google.com/search?q=immunity+debugger
&oq=immunity+debugger&aqs=chrome.0.016.2408;0;7
&sourceid=chrome&es_ sm=122&ie=UTF-8>, pp. 1-4.*

Goppit , “Portable Executable File Format—A Reverse Engineer
View” , CodeBreakers , 2006 , <http://www.woodmann.com/col-
laborative/knowledge/images/Bin_ Portable_ Executable File
Format_ %FE2%80%93__A_ Reverse_Engineer View _ 2012-1-

31_1643_CBM_1_2_ 2006_Goppit_PE_Format Reverse__
Engineer_ View.pdf>, pp. 1-87.*

Min-Jae Kim et al. , “Design and Performance Evaluation of Binary
Code Packing for Protecting Embedded Software against Reverse
Engineering” , IEEE , 2010 , <http://iecexplore.icee.org/stamp/
stamp.jsp?tp=&arnumber=5479571> , pp. 1-7.*

Silvio Cesare et al. , “Classification of Malware Using Structured
Control Flow” , Australian Computer Society , 2010 , <http://deliv-
ery.acm.org/10.1145/1870000/1862301/p61-cesare.pdf> . pp.
1-10.*

IEEE Xplore Digital Library Search results received with Office
Action mailed Aug. 29, 2012 in related U.S. Appl. No. 12/846,048 (5
pages).

Weber, et al., “A Toolkit for Detecting and Analyzing Malicious
Software,” Proceedings of the 18th Annual Computer Security Appli-
cations Conference, pp. 423-431, 2002.

“Microsoft Portable Executable and Common Object File Format
Specification,” Microsoft Corporation, Revision 6.0—Feb. 1999, pp.
1-76.

Josse, Sebastien, “Secure and Advanced Unpacking Using Computer
Emulation,” Journal in Computer Virology, May 4, 2007, vol. 3, No.
3, XP-002611754, pp. 221-236.

Labir, E., “Unpacking by Code Injection,” Code Breakers Journal,
2004, vol. 1, No. 2, XP008113772, pp. 1-16.

Kath, Randy, “The Portable Executable File Format from Top to
Bottom,” Dec. 31, 1997, XP-002390459.

International Search Report with Written Opinion, dated Dec. 13,
2010, received in international patent application No. PCT/US2010/
043660, 12 pgs.

International Search Report with Written Opinion, dated Dec. 8,
2010, received in international patent application No. PCT/US2010/
043666, 14 pgs.

International Search Report with Written Opinion, dated Nov. 29,
2010, received in international patent application No. PCT/US2010/
043657, 11 pgs.

Draft Standard for Information Technology—Portable Operating
System Interface (POSIX), Copyright 2006 The institute of Electrical
& Electronics Engineers, Inc. Hearafer called “POSIX”. Portable
Applications Standards Committee of the IEEE Computer Society
and The Open Gro http://icee.org/stamp/stamp.jsp?tp=
&arnumber=4152624&tag=1. Copyright: 2006. By Thames Tower,
Station Road, Reading, Berkshire RG1 11X, UK.

International Preliminary Report on Patentability, mailed Feb. 9,
2012, and received for International Patent Application No. PCT/
US2010/043657, 6 pgs.

International Preliminary Report on Patentability, mailed Feb. 9,
2012, and received for International Patent Application No. PCT/
US2010/043660, 7 pgs.

International Preliminary Report on Patentability, mailed Feb. 9,
2012, and received for International Patent Application No. PCT/
US2010/043666, 9 pgs.

Non-Final Office Action issued on Aug. 29, 2012 in counterpart U.S.
Appl. No. 12/846,048.

Final Office Action issued on May 15, 2013 in counterpart U.S. Appl.
No. 12/846,048.

Non-Final Office Action issued on Oct. 7, 2013 in counterpart U.S.
Appl. No. 12/846,048.

Final Office Action issued on May 6, 2014 in counterpart U.S. Appl.
No. 12/846,048.

Non-Final Office Action issued on Dec. 4, 2014 in counterpart U.S.
Appl. No. 12/846,048.

Non-Final Office Action issued on Oct. 23, 2015 in counterpart U.S.
Appl. No. 12/846,048.

* cited by examiner

US 9,361,173 B2

Sheet 1 of 4

Jun. 7,2016

U.S. Patent

I 'Ol

/‘T—r

ssao0.d Bupoedun
pajewojne

/‘Q

s8204d Jiedal

/‘\9

ssaoo0.d
%080 Ayipijea

dd

paiols | ™

Aowsw
ul 3d

abew
Aleuiqg
ad

US 9,361,173 B2

Sheet 2 of 4

Jun. 7,2016

U.S. Patent

¢ '9Old

sofsueloeieyo sbew
Aleuig 34 auiwis)ep

@

Bulieds.
0 pooyi|e]] sulwislep

I

SO 1o} pije Ji suiLLB}ep

canas
(Y3
)

51)SLIBJORIBYD
pileA pue ejnqLyje
usamjaq yolew suilLIe)ep

.

f

oisLseBIRYD
plieA 0} s)nguye aledwoo

f

aingLne
plal} pesied suiwis)ep

f

plels pesled sjessusb

e

abew Aleuiq asJed

US 9,361,173 B2

Sheet 3 of 4

Jun. 7,2016

U.S. Patent

1
cel

aoIA8p
sbeJo)s 0} a4 dwnp

A

Alowsw ul 3|1} 34 Ajpowl

A

a|u 3d 9Inoaxs

A

plall pPlleAUl BACWS

PIal plleAUl B|qesip

ocl

A

Jledau AjleoiweuAp

0cl

8Ll

€ Old

sbew| payipow alols

A

abew Aupow

A

Jedsu A|jeone)s

(Y3

8|l 3d Jedal

™
90}

|epow Jiedss syessush

¥0l

1433

saInqLe
plleAUl JO SONSIB)0RIBYD
puE Joguwinu sulwislep

v
v

Buniedss
40 pooy||exl] suiwelep

j

I
)

433

3080 Ajipijea wioLiad

¢0l

oLl

podal AjIpijea sseooe

N o

plal pleaul Aygusp

801

Jojeoipul A)ipijeA aA1808l

US 9,361,173 B2

Sheet 4 of 4

Jun. 7,2016

U.S. Patent

¥ Old
8|} 3d
~| pabBngap o) uonoss ppe
891
o apoo Bui|iy s|gey 18
yo| | Siulodxeaud BuiBBngsp Jes

~

wiod Anus [euibuo
1e BulBBngap ajeuILLB)

™
851

8|} 3d pebbngsp ubijes.

0Ll

3|} 3d pehhngsp
ol s8|qe) s)sed

991

ao1Aap abelols 0) Alowsw
ul 8|1} 34 pabbngap Adoo

™
951

ejep s|qe)
uoljeosolel / BJep 8|qe)
ssalppe poduwl| 09|00

Sl

ssao0.d
BuiBBngsp s)noaxs

™
zsk

ssa.ppe juiod

1 Aqus |[euiBluo suiwisiep

091

cmmn
a

vaaa,

wiod Ajus
[euiBlo je juiod yeslq Jos

™
05}

sseo04d
BuiBbngep az|eul

n:nl//

9l

US 9,361,173 B2

1
AUTOMATED UNPACKING OF PORTABLE
EXECUTABLE FILES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. provisional
patent application Ser. No. 61/229,497, filed on 29 Jul. 2009,
the entire disclosure of which is incorporated herein by ref-
erence.

TECHNICAL FIELD

This application generally relates reverse engineering soft-
ware, and more particularly relates to unpacking software and
validity analysis of software files.

BACKGROUND OF THE DISCLOSURE

Portable executable file format (PE file format), as defined
by Microsoft Corporation in the “Microsoft Portable Execut-
able and Common Object File Format Specification” is a file
format for executables, object code and DLL’s (dynamic link
libraries). PE files are used in 32-bit and 64-bit versions of the
Microsoft Windows operating systems. The PE file format is
a highly versatile format that can be used in numerous oper-
ating system environments and supports various processor
solutions.

Software developers may use various schemes to protect
software, including PE files. For example, software packers
may be utilized to compress binaries, which may decrease
bandwidth usage associated with transferring the binaries and
storage volume. Similarly, packers may be utilized to protect
intellectual property embodied within the software and to
prevent code theft. Packing may involve various schemes of
compression and/or encryption that may obfuscate the con-
tents of the executable code. Running the packed executable
file may unpack the original executable code (e.g., which may
include decompressing and/or decrypting) and then transfer-
ring control to the original executable code. As such, the
nature of the executable code may not be known until the
software is actually executing. This can be problematic, for
example, if the executable code is malware or other undesir-
able software, as the nature of the software may not be known
until it is too late.

SUMMARY OF THE DISCLOSURE

According to an implementation, a computer implemented
method includes setting, by a computing device, a debugging
breakpoint at an original entry point address of a packed
portable executable file. The method also includes executing,
by the computing device, a debugging process for the packed
portable executable file to obtain a debugged portable execut-
able file in memory. One or more of import address table data
and relocation table data are collected by the computing
device during execution of the debugging process for the
packed portable executable file. The debugged portable
executable file in memory is copied, by the computing device,
to a storage medium. The method further includes terminat-
ing, by the computing device, the debugging process.

One or more of the following features may be included.
The original entry point address of the packed portable
executable file may be determined by the computing device
based upon, at least in part, ImageBase field data of the
packed portable executable file and AddressOfEntryPoint
data of the packed portable executable file, as well as possible

10

15

20

25

30

35

40

45

50

55

60

65

2

additional numeric calculations that may be based on, at least
in part, the software packer layout itself. The debugging pro-
cess may be initialized by the computing device, including
creating a debugging process based upon, at least in part, the
packed portable executable file.

Collecting one or more of import address table data and
relocation table data may include setting one or more debug-
ging breakpoints associated with a LoadLibrary call, a Get-
ModuleHandle call, and a GetProcAddress call, and a part of
the software packer that relocates the file in memory. One or
more of an import address table, based upon, at least in part,
the collected import address table data, and a relocation table,
based upon, at least in part, the collected relocation table data
may be pasted into the debugged portable executable file
copied to the storage medium by the computing device. Past-
ing into the debugged portable executable file copied to the
storage medium may include adding a new section to the
debugged portable executable file copied to the storage
medium. The method may also include realigning, by the
computing device, the debugged portable executable file cop-
ied to the storage medium.

According to another implementation, a computer pro-
gram product includes a computer readable medium having a
plurality of instructions stored on it. When executed by a
processor, the instructions cause the processor to perform
operations including setting a debugging breakpoint at an
original entry point address of a packed portable executable
file. Instructions are also included for executing a debugging
process for the packed portable executable file to obtain a
debugged portable executable file in memory. One or more of
import address table data and relocation table data are col-
lected during execution of the debugging process for the
packed portable executable file. Instructions are also included
for copying the debugged portable executable file in memory
to a storage medium. Instructions are further included for
terminating the debugging process.

One or more of the following features may be included.
Instructions may be included for determining the original
entry point address of the packed portable executable file
based upon, at least in part, ImageBase field data of the
packed portable executable file and AddressOfEntryPoint
data of the packed portable executable file, as well as possible
additional numeric calculations that may be based on, at least
in part, the software packer itself. Instructions may be
included for initializing the debugging process including cre-
ating a debugging process based upon, at least in part, the
packed portable executable file.

Collecting one or more of import address table data and
relocation table data may include setting one or more debug-
ging breakpoints associated with a LoadLibrary call, a Get-
ModuleHandle call, and a GetProcAddress call, and a part of
the software packer that relocates the file in memory. Instruc-
tions may be included for pasting into the debugged portable
executable file one or more of an import address table, based
upon, at least in part, the collected import address table data,
and a relocation table, based upon, at least in part, the col-
lected relocation table data. Pasting into the debugged por-
table executable file may include adding a new section to the
debugged portable executable file.

Instructions may further be included for realigning the
debugged portable executable file.

According to yet another implementation, a system
includes a processor, and a memory coupled with the proces-
sor. A first software module is executable by the processor and
the memory. The first software module is configured to set a
debugging breakpoint at an original entry point address of a
packed portable executable file. A second software module is

US 9,361,173 B2

3

executable by the processor and the memory. The second
software module is configured to execute a debugging pro-
cess for the packed portable executable file to obtain a
debugged portable executable file in memory. A third soft-
ware module is executable by the processor and the memory.
The third software module is configured to collect one or
more of import address table data and relocation table data
during execution of the debugging process for the packed
portable executable file. A fourth software module is execut-
able by the processor and the memory. The fourth software
module is configured to copy the debugged portable execut-
able file in memory to a storage medium. A fifth software
module is executable by the processor and the memory. The
fifth software module is configured to terminate the debug-
ging process.

One or more of the following features may be included. A
sixth software module may be executable by the processor
and the memory. The sixth software module may be config-
ured to determine the original entry point address of the
packed portable executable file based upon, at least in part,
ImageBase field data of the packed portable executable file
and AddressOfEntryPoint data of the packed portable execut-
able file, as well as additional numeric calculations based on,
at least in part, the software packer layout itself. A seventh
software module may be executable by the processor and the
memory. The seventh software module may be configured to
initialize the debugging process including creating a debug-
ging process based upon, at least in part, the packed portable
executable file.

The third software module, configured to collect one or
more of import address table data and relocation table data,
may be configured to set one or more debugging breakpoints
associated with a LoadLibrary call, a GetModuleHandle call,
and a GetProcAddress call, and a part of the software packer
that relocates the file in memory. An eighth software module
may be executable by the processor and the memory. The
eighth software module may be configured to paste into the
debugged portable executable file, by the computing device,
one or more of an import address table, based upon, at least in
part, the collected import address table data, and a relocation
table, based upon, at least in part, the collected relocation
table data. The eighth software module, configured to paste
into the debugged portable executable file, may be configured
to add a new section to the debugged portable executable file.

A ninth software module may be executable by the proces-
sor and the memory. The ninth software module may be
configured to realign the debugged portable executable file.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features and advantages will become apparent from the
description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically depicts a computing device that may
execute one or more of a validity check process, a repair
process and a automated unpacking process.

FIG. 2 is a flow diagram of a process performed by the
validity check process of FIG. 1.

FIG. 3 is a flow diagram of a process performed by the
repair process of FIG. 1.

FIG. 4 is a flow diagram of a process performed by the
automated unpacking process of FIG. 1.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method or computer

10

15

20

25

35

40

45

50

55

60

65

4

program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present invention may take the form of a computer program
product embodied in one or more computer-readable (i.e.,
computer-usable) medium(s) having computer-usable pro-
gram code embodied thereon.

Any combination of one or more computer-readable medi-
um(s) may be utilized. The computer-readable medium
include a computer-readable storage medium, which may be,
for example, but is not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, a device, or any suitable combination of the fore-
going. Exemplary computer readable storage medium may
include, but is not limited to, a portable computer diskette, a
hard disk, a solid state disc drive, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer-readable storage medium may be
any medium that can contain, or store a program for use by or
in connection with an instruction execution system, appara-
tus, or device.

Computer program code for carrying out operations of the
present invention may be written in an object oriented pro-
gramming language such as Java, Smalltalk, C++ or the like.
However, the computer program code for carrying out opera-
tions of the present invention may also be written in conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on a single comput-
ing device, e.g., as a stand-alone software package, and or
may be at least partly executed on multiple computing
devices that may be remote to one another. In the latter sce-
nario, remote computing devices may be connected to one
another through a local area network (LAN) or a wide area
network (WAN), or the connection may be made to one or
more remote computing devices (for example, through the
Internet using an Internet Service Provider).

The present invention is described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. These computer program instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

US 9,361,173 B2

5

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

Referring to FIG. 1, there is shown validity check process
10, repair process 12, and automated unpacking process 14
that may each reside on and may be executed by computing
device 16. While each of validity check process 10, repair
process 12, and automated unpacking process 14 are shown
residing on computing device 12, this is intended for illustra-
tive purposes only, as one or more of validity check process
10, repair process 12, and automated unpacking process 14
may reside on a separate computing device.

Examples of computing device 16 may include, but are not
limited to: a personal computer, a server computer, a series of
server computers, a mini computer, and a mainframe com-
puter. Computing device 16 may run an operating system, for
example, Microsoft® Windows® XP, or Red Hat® Linux®,
for example. Various additional/alternative computing
devices and operating systems may equally be utilized. For
example, computing device 16 may be part of a distributed
computing network with one or more of validity check pro-
cess 10, repair process 12, and automated unpacking process
14 being executed, in whole or in part, on another computing
device coupled with computing device 16 via a data network
(e.g., a LAN, a WAN, the Internet, etc.).

As will be discussed below in greater detail, validity check
process 10 may parse a binary image of a portable executable
file to generate a parsed field. Validity check process 10 may
also determine an attribute of the parsed field. Further validity
check process 10 may compare the attribute of the parsed field
to a valid characteristic of a valid corresponding field based
upon, at least in part, a portable executable file format speci-
fication. Validity check process 10 may also determine if the
attribute of the parsed field matches the valid characteristic of
the valid corresponding field.

Further, and as will also be discussed below in greater
detail, repair process 12 may identify an invalid field of a
portable executable file. Repair process 12 may also deter-
mine a likelihood of repairing the invalid field of the portable
executable file. Repair process 12 may generate a repair
model for repairing the invalid field of the portable executable
file. Repair process 12 may repair the invalid field of the
portable executable file is repaired based upon, at least in part,
the repair model.

Similarly, and as will also be discussed below in greater
detail, automated unpacking process 14 may set a debugging
breakpoint at an original entry point address of a packed
portable executable file. Automated unpacking process 14
may also execute a debugging process for the packed portable
executable file to obtain a debugged portable executable file
in memory. Automated unpacking process 14 may also col-
lect one or more of import address table data and relocation
table data during execution of the debugging process for the
packed portable executable file. Automated unpacking pro-
cess 14 may copy the debugged portable executable file in
memory to a storage medium, and may terminate the debug-
ging process.

The instruction sets and subroutines of validity check pro-
cess 10, repair process 12, and automated unpacking process
14, which may include one or more software modules, and
which may be stored on storage device 18 coupled to com-

25

40

45

50

6

puting device 16, may be executed by one or more processors
(not shown) and one or more memory modules (not shown)
incorporated into computing device 16. Storage device 18
may include but is not limited to: a hard disk drive; a solid
state drive, a tape drive; an optical drive; a RAID array; a
random access memory (RAM); and a read-only memory
(ROM).

Due to the fact that PE (portable executable) files contain
executable code, it may be desirable to perform file validation
prior to execution of the binary object (e.g., the binary image
of the PE file). Validity check process 10 may analyze a PE
binary image prior to execution to determine if the PE file is
a valid binary image. A valid binary image may refer to a file
that can be used by a given operating system, either as an
image that contains executable code or other type of multi-
media information.

As discussed above, and referring also to FIG. 2, validity
check process 10 may parse 50 a binary image of a portable
executable file (e.g., PE binary image 20, residing on storage
device 18, shown in FIG. 1) to generate 52 a parsed field.
Validity check process 10 may also determine 54 an attribute
of the parsed field. Further, validity check process 10 may
compare 56 the attribute of the parsed field to a valid charac-
teristic of a valid corresponding field based upon, at least in
part, a portable executable file format specification. Validity
check process 10 may determine 58 if the attribute of the
parsed field matches the valid characteristic of the valid cor-
responding field.

Validity check process 10 may parse 50 PE binary image 20
to generate 52 a parsed field. Validity check process 10 may
parse 50 PE binary image 20 to generate 52 a plurality of
fields consistent with PE file format 100. For example, valid-
ity check process 10 may generally parse 50 PE binary image
into a portable executable format signature, an ImageBase
field, a SizeOflmage field, a FileAlignment field, a Section-
Alignment field, an EntryPoint address, an import table, an
import address table, an export table, a relocation table, a
resource table, a thread local storage table, a load configura-
tion table, a bound import table, a COM table, and a portable
executable section table.

While several fields have been indicated, these are intended
only for illustrative purposes only, as validity check process
10 may parse 50 PE binary image 20 into various additional/
alternative fields selected based upon design criteria and user
need. Additionally, parsing 50 PE binary image 20 to generate
52 one or more parsed fields, may include, but is not limited
to, physically isolating each field (e.g., copying each field into
aseparate file, database field, or the like), individually reading
each field, associating an offset with the beginning (and/or
ending) of each field, or the like. As such, parsing 50 PE
binary image 20 to generate 52 one or more parsed fields may
allow individual examination of each field.

As discussed above, validity check process 10 may also
determine 54 an attribute of the parsed field. The attribute
determined 54 by validity check process 10 may include one
or more of a field identifier, a field length, and a field content.
For example, validity check process 10 may determine 54 that
PE binary image 20 includes an ImageBase field having a
value of 0x00400000, a SectionAlignment field having a
value 0f 0x1000, and a FileAlignment field having a value of
0x200.

Validity check process 10 may compare 56 the one or more
determined 54 attributes of the parsed field to a valid charac-
teristic of a valid corresponding field based upon, at least in
part, a portable executable file format specification. A valid
corresponding field may include a field that is required or
allowed by the “Microsoft Portable Executable and Common

US 9,361,173 B2

7

Object File Format Specification” published by Microsoft
Corporation (PECOFF), and which corresponds to a parsed
field. For example, a valid corresponding field for the parsed
ImageBase field may be the ImageBase field allowed as an
option Windows specific field by PECOFF. A valid charac-
teristic of a valid corresponding field may include a charac-
teristic that is allowable by PECOFF. For example, PECOFF
may specify acceptable field identifiers, field lengths and field
contents of an accepted PE binary image. For example,
PECOFF may define a default ImageBase value of
0x00400000, and may require that the value be a multiple of
64 K. Similarly, PECOFF may specify that the SectionAlign-
ment field have a value that is greater than or equal to the
FileAlignment. Further, PECOFF may specify that the
FileAlignment have a value that is a power of 2 between 512
and 64 K, with a default value of 512. Accordingly, the fore-
going may be example of valid characteristics for the identi-
fied fields.

Validity check process 10 may determine 58 if the attribute
of'the parsed field matches the valid characteristic of the valid
corresponding field based upon, at least in part, the compari-
son 56 between the attribute of the parsed field and a valid
characteristic of a valid corresponding field. Continuing with
the above stated example, the determined 54 attribute for the
FileAlignment field of PE binary image 20 was 512. As also
discussed above, PECOFF may specify that the FileAlign-
ment field have a value that is a power of 2 between 512 and
64 K. Accordingly, validity check process 10 may determine
58 that the attribute of parsed FileAlignment field (e.g., hav-
ing a value of 512) matches a valid characteristic of a valid
FileAlignment field.

Determining 58 if the attribute of the parsed field matches
the valid characteristic of the valid corresponding field may
include determining 60 if the attribute of the parsed field is
valid for a predetermined operating system. Again, continu-
ing with the above-stated example, validity check process 10
may have determined 54 a ImageBase field value of
0x00400000 for PE binary image 20. This determined value
may be the default value for the operating systems Windows
NT, Windows 2000, Windows XP, Windows 95, Windows 98,
and Windows Me. However, the ImageBase field default
value for Windows CE is 0x00010000, per PECOFF. Accord-
ingly, validity check process 10 may determine 60 that the
parsed ImageBase field for PE binary image 20 is not valid for
Windows CE.

Validity check process 10 may determine 58 if the parsed
field does not match the valid characteristic of the valid cor-
responding field. Continuing with the above-stated example,
PECOFF specifies that the SectionAlignment field have a
value that is greater than, or equal to, the FileAlignment.
Further, validity check process 10 may have determined 54 a
SectionAlignment field attribute of 256 and a FileAlignment
field attribute of 512 for PE binary image 20. Accordingly, as
the determined 54 SectionAlignment field attribute (i.e., 256)
is not greater than or equal to the determined 54 FileAlign-
ment field attribute (i.e., 512) for PE binary image 20, validity
check process 10 may determine 58 that the parsed Section-
Alignment field does not match a valid characteristic of a
valid corresponding field (i.e., the determined 54 Section-
Alignment field attribute is not greater than or equal to the
determined 54 FileAlignment field attribute). Accordingly,
validity check process 10 may provide an indicator (e.g., may
provide an indicator in a graphical user interface, not shown).

If'the parsed field does not match the valid characteristic of
the valid corresponding field, validity check process 10 may
determine 62 a likelihood of modifying the parsed field that
does not match the valid characteristic of the valid corre-

30

35

40

45

50

55

60

65

8

sponding field to generate a valid field. Validity check process
10 may determine 62 the likelihood of modifying the parsed
field to generate a valid field based upon, at least in part, the
number and nature of errors in a field that does not match the
valid characteristic of a valid corresponding field. For
example, and continuing with the above-discussed example,
the parsed SectionAlignment field of PE binary image 20
does not match a valid characteristic of a valid SectionAlign-
ment field because the value is less than the value of the
FileAlignment field. Validity check process 10 may deter-
mine 62 a relatively strong likelihood of being able to modify
the SectionAlignment filed of PE binary image 20 to generate
a valid characteristic as the parsed SectionAlignment field of
PE binary image 20 includes a single well defined error
(namely, the value is less than the FileAlignment field). It
may, for example, be possible to modify the SectionAlign-
ment field to include a value that is greater than or equal to the
FileAlignment field. Although some recursive testing may be
necessary to modify the SectionAlignment field of PE binary
image 20 to achieve a valid field it may be reasonably likely
that such a modification may be achieved.

The likelihood of modifying a field to generate a valid field
may be determined 62 based upon, at least in part, one or more
empirically determined rules. The one or more empirically
determined rules may be based upon, at least in part, various
possible types of errors that may occur in various fields, and
the possible modifications that may be implemented to cor-
rect the errors. As such, an error type in a given field for which
there may be relatively few possible modifications that may
generally result in a valid field, validity check process 10 may
determine 62 a relatively high likelihood of modifying the
field to generate a valid field. Conversely, for an error type
having many possible modifications, many of which may not
result in a valid field, validity check process 10 may deter-
mine 62 a relatively low likelihood of modifying the field to
generate a valid field. Similarly, if the number of detected
errors between the parsed field and a valid corresponding field
are relatively large, validity check process 10 also determine
62 a relatively low likelihood of modifying the field to gen-
erate a valid field.

Validity check process 10 may also determine 64 if the
binary image of the portable executable file includes a
dynamic link library, a kernel driver, or an executable object.
Validity check process 10 may determine 64 the nature of PE
binary image 20 based upon, for example, one or more of the
included fields, the content of the included fields, or the like,
by evaluating the parsed fields relative to possible valid char-
acteristics and possible valid fields. Various additional/alter-
native characteristics of PE binary image 20 may similarly be
determined. For example, validity check process 10 may
determine one or more of an environment in which the PE file
may execute, if the PE file is a console or other application
with a graphical user interface, if the PE file includes depen-
dencies and whether the dependencies exist on the target
system, if the PE file includes depend functions and whether
the dependent function exist in libraries available on the target
system, etc.

As briefly mentioned above, validity check process 10 may
provide an output indicating the various parsed fields, field
attributes, validity of the fields, nature of the PE file, etc. Inan
embodiment, validity check process 10 may provide a graphi-
cal user interface, through which the various outputs may be
rendered. Additionally/alternatively validity check process
10 may provide an output to a database, file, etc., which may
be consumed by a user via an appropriate program, such as a
database application. Various other suitable outputs will be
appreciated by those having skill in the art.

US 9,361,173 B2

9

PE binary images may be come damaged through various
mechanisms. For example, PE files may become damaged
when the files are transferred from one media to another.
Similarly, errors may be introduced by software packers (e.g.,
UPX, PECompact, ASPack, etc.). Error introduced by soft-
ware packers may render some files valid only for certain
versions of operating systems that support PE file formats.
Accordingly, repair process 12 may be implemented to repair
damaged PE files.

With reference also to FIG. 3, repair process 12 may iden-
tify 100 an invalid field of a portable executable file (e.g., PE
binary image 20 shown in FIG. 1). Further, repair process 12
may determine 102 a likelihood of repairing the invalid field
of'the portable executable file. Repair process 12 may gener-
ate 104 a repair model for repairing the invalid field of the
portable executable file. Repair process 12 may repair 106 the
invalid field of the portable executable file based upon, at least
in part, the repair model generated 104 by repair process 12.

Repair process 12 may identify 100 an invalid field of PE
binary image 20 utilizing a variety of mechanisms. For
example, repair process 12 may receive 108 an indicator from
validity check process 10 (described in detail above) indicat-
ing the validity of PE binary image 20 and/or subset parts of
PE binary image 20 (i.e., the validity of the various fields of
PE binary image 20). Repair process 12 may receive 108 the
indicator directly from validity check process 10. Addition-
ally/alternatively, in an embodiment in which validity check
process 10 may generate a validity report (e.g., in the form a
file, database entries, or the like), repair process 12 may
identify 100 an invalid field (and/or a plurality of invalid
fields) by accessing 110 the validity report and interpreting
the contents thereof.

In further embodiments, repair process 12 may identify
100 an invalid field of PE binary image 20 by performing 112
one or more validity checks on PE binary image 20. For
example, repair process 12 may perform one or more validity
checks on PE binary image 20 in a manner similar to that
discussed above with reference to validity check process 10.
For example, repair process 12 may generally parse PE binary
image 20 into a plurality of fields, and may compare attributes
of the plurality of fields to valid characteristics of valid cor-
responding fields. As discussed above, valid characteristics of
valid corresponding fields may be specified by PECOFF.
Accordingly, the validity of a field (and/or of PE binary image
20 as a whole) may be determined based upon, at least in part,
whether the various fields and attributes comply with
PECOFF. Therefore, repair process 12 may identify 100 an
invalid field as a field having an attribute that does not comply
with a valid characteristic of a valid corresponding fields as
specified by PECOFF.

When identifying 100 an invalid field, repair process 12
may examine all fields of PE binary image 20, and/or may
give special attention to the most crucial fields of PE binary
image 20. Examples of fields that may be particularly impor-
tant (e.g., which may have the greatest impact on the execut-
ability of PE binary image 20) may include, but are not
limited to, PE format signatures, PE specific fields (e.g.,
ImageBase, SizeOflmage, FileAlignment, SectionAlign-
ment, and EntryPoint address), and PE specific tables (e.g.,
Import table, Import address table, Export table, Relocation
table, Resource table, Thread local storage table, Load con-
figuration table Bound import table, COM table, and PE
section tables).

As discussed above, repair process 12 may determine 102
a likelihood of repairing the invalid field (or multiple invalid
fields) of PE binary image 20. Repair process 12 may deter-
mine 102 a likelihood or repairing the invalid field of PE

20

25

35

40

45

50

10

binary image 20 based upon, at least in part, determining 114
the number and characteristics of attributes of the invalid field
that do not match a valid characteristic of a valid correspond-
ing field based upon, at least in part, a portable executable file
format specification (e.g., PECOFF). For example, it will be
appreciated that various errors may have a higher likelihood
of being repairable than other errors. Similarly, a PE file
having relatively few errors may have a higher likelihood of
being repairable than a PE file having a relatively large num-
ber of errors.

Repair process 12 may determine 102 the likelihood of
repairing an invalid field including comparing the identified
100 invalid field(s) (including the attributes of the invalid
fields that fail to comply with PECOFF) against a library of
possible errors and likelihood of repairing the error. The
library (e.g., library 22 residing on storage device 18) may
include empirically derived data of various errors that have
previously been encountered and whether it was possible to
repair the error to obtain an executable file.

As mentioned above, repair process 12 may generate 104 a
repair model for repairing the identified 100 invalid field(s).
The repair model generated 104 by repair process 12 may
include one or more algorithms for repairing the one or more
identified 100 invalid field. Similar to determining 102 a
likelihood of repairing the invalid field, repair process 12 may
generate 104 the repair model based upon, at least in part, one
or more empirically derived rules (e.g., which may be
included in library 22). For example, repair process 12 may
generate 104 a repair model for repairing an invalid
SizeOflmage field having an abnormal value, in which the
rule may include recalculation of a correct SizeOflmage
value. Similarly, repair process 12 may generate 104 a repair
model for repairing an invalid entry point section that does not
include an executable attribute, in which the rule may include
correcting the section attributes. In a further example, repair
process 12 may generate 104 a repair model for repairing an
invalid resource table data that cannot be physically located,
in which the rule may include temporarily removing the
invalid resource table values in the PE header. Additionally,
library 22 may include rules that are empirically derived
based upon a comparison between different operating system
versions and the way the different operating system versions
process the PE file format.

Repair process 12 may repair 106 the invalid field of the
portable executable file based upon, at least in part, the repair
model generated 104 by repair process 12. Some errors (i.e.,
invalid fields) may be repaired “on disk” by modifying PE
binary image 20 residing on storage device 18. Accordingly,
repair process 12 may repair 106 the invalid field may by
statically repairing 116 the invalid field. Statically repairing
116 the invalid field may include modifying 118 the image of
the portable executable file (e.g., PE binary image 20) on
storage device 18. Repair process 12 may store 120 the modi-
fied PE image on storage device 18.

For example, and continuing with the above example, in
which the PE field SizeOflmage was identified 100 as being
invalid for having an abnormal value, repair process 12 may
statically repair the SizeOflmage field of PE binary image 20.
For example, repair process may recalculate a correct
SizeOflmage value. Repair process 12 may modify PE binary
image 20 to include the correct SizeOflmage value. Repair
process 12 may store modified PE binary image 20 on storage
device 18.

In addition to errors that may be repaired “on disk,” other
errors may be repaired in memory. The determination as to
what errors may be repaired “on disk” on what errors may be
repaired in memory may be based upon, at least in part, the

US 9,361,173 B2

11

empirically derived rules (e.g., which may reside in library
22). For errors that may be repaired in memory, repair process
12 may dynamically repair 122 the invalid field. To dynami-
cally repair 122 an invalid field, repair process 12 may
execute 124 the portable executable file (e.g., PE binary
image 20). Repair process 12 may further modify 126 the
portable executable file residing in memory (e.g., in RAM)
during execution, in which the portable executable file resid-
ing in memory during execution is based upon the portable
executable file (e.g., based upon PE binary image 20).

Further, repair process may repair 106 the invalid field by
disabling 128 the invalid field. For example, repair process
may temporarily disable 128 an invalid field by removing 130
the invalid field from an image of the portable executable file
(e.g., PE binary image 20) stored on storage device 18 prior to
execution of the portable executable file.

In some embodiments, repair process 12 may repair 106 an
invalid field by disabling 128 the invalid field and dynami-
cally repairing 122 the invalid field. For example, and refer-
ring to the above example in which resource table data could
not be physically located, repair process 12 may temporarily
remove 130 the invalid resource table values in the PE header.
Repair process 12 may then execute 124 PE binary image 20
(e.g., repair process 12 may execute an unpacker of PE binary
image 20) up to the original entry point of the portable execut-
ablefile. The original entry point may include the first instruc-
tion of code of the portable executable file before the portable
executable file was protected (e.g., packed). Once execution
of PE binary image 20 reaches the original entry point the
process memory may be dumped 132 to storage device 18.
That is, the process memory associated with the execution of
PE binary image 20 residing in RAM may be saved to storage
device 18. The resource table data acquired from memory
during unpacking of PE binary image 20 may be reverted to
an original state, and a new PE file based upon, at least in part,
the dumped process memory may be stored. Accordingly, a
valid PE file (i.e., a PE file in compliance with PECOFF) may
be achieved.

In an embodiment a PE binary image 24 may include a
packed portable executable file. A packed portable executable
file may include portable executable file (consistent with
PECOFF, discussed herein above) that may include one or
more software protections, such as compression, encryption,
combinations of compression and encryption, etc. Automated
unpacking process 14 may, generally, execute a debugging
process for the packed portable executable file, and may
utilize various breakpoints and callbacks to collect import
address table filling data, as well as various other data that
may be used to build an unprotected, valid portable execut-
able file based upon packed (e.g., protected) PE binary image
24.

Referring also to FIG. 4, in general automated unpacking
process 14 may set 150 a debugging breakpoint at an original
entry point address of a packed portable executable file (e.g.,
packed PE binary image 24, shown in FIG. 1). Automated
unpacking process 14 may also execute 152 a debugging
process for the packed portable executable file to obtain a
debugged portable executable file in memory (e.g., in RAM).
Automated unpacking process 14 may collect 154 one or
more of import address table data and relocation table data
during the execution 152 of the debugging process for the
packed portable executable file. Automated unpacking pro-
cess 14 may copy 156 the debugged portable executable file
stored in memory to a storage medium (e.g., storage device
18). Automated unpacking process 14 may terminate 158 the
debugging process at the original entry point of the portable
executable file.

30

40

45

12

As discussed, automated unpacking process 14 may set
150 a debugging breakpoint at an original entry point address
of packed PE binary image 24. The original entry point of
packed PE binary image 24 may be the first instruction of the
executable code before the file was protected. Setting 150 a
debugging breakpoint at the original entry point address of
packed PE binary image 24 may allow the execution of
packed PE binary image 24 to be suspended prior to control
being passed to the executable file embodied within packed
PE binary image 24. As used herein, “execution of packed PE
binary image” and “executing packed PE binary image” may
refer to the execution of the file embodied by the packed PE
binary image and the executing PE file embodied by the
packed PE binary image. Automated unpacking process 14
may determine 160 the ImageBase field data of the packed
portable executable file and AddressOfEntryPoint data of the
packed portable executable file. The ImageBase field data and
the AddressOfEntryPoint data may be loaded from packed PE
binary image 24. The original entry point address of packed
PE binary image 24 may be the sum of the ImageBase data
and the AddressOfEntryPoint data. Determining the original
entry point may additionally include other numeric calcula-
tions, which may be based upon, at least in part, the software
packer layout itself. Automated unpacking process 14 may
load various additional data from packed PE binary image 24,
such as, but not limited to, ImageBase data, SizeOflmage
data, and PE section data.

Automated unpacking process 14 may initialize 162 the
debugging process. Initializing 162 the debugging process
may include creating a debugging process based upon, at least
in part, packed PE binary image 24. That is, initializing 162
the debugging process may establish a debugging environ-
ment in which packed PE binary image 24 may be executed.
In the initialized debugging process, automated unpacking
process 14 may set 150 a debugging breakpoint on the origi-
nal entry point. The debugging breakpoint set on the original
entry point will be called once the debugged process finishes
loading, before execution of the first instruction of the execut-
able file embodied within packed PE binary image 24.

Automated unpacking process 14 may execute 152 the
initialized debugging process. That is, packed PE binary
image 24 may be executed within the established debugging
environment. Automated unpacking process 14 may collect
154 one or more of import address table data and relocation
table data. Collecting 154 one or more of import address table
data and relocation table data may include running the debug-
ging process until it reaches the import address table filling
code. In part, automated unpacking process 14 may collect
154 one or more of import address table data and relocation
table data by setting 164 one or more debugging breakpoints
associated with a LoadLibrary call, a GetModuleHandle call,
and a GetProcAddress call. Additional breakpoints may also
be associated with a part of the software packer that relocates
the file in memory. Breakpoints associated with a LoadLi-
brary call, a GetModuleHandle call, and a GetProcAddress
call may be set, in some embodiments, during initialization
162 of the debugging process.

Packed PE binary image 24 executing within the debug-
ging process may utilize a LoadLibrary API call or a Get-
ModuleHandle API call in order to load a dependent dynamic
link library. Setting 164 one or more breakpoints associated
with a LoadLibrary call or a GetModuleHandle call may
result in a callback to automated unpacking process 14 when
executing packed PE binary image 24 loads a dynamic link
library. In response to the breakpoint callback associated with
a LoadLibrary call or a GetModuleHandle call, automated

US 9,361,173 B2

13

unpacking process 14 may collect 154 the name of the
dynamic link library being loaded by executing packed PE
binary image 24.

Similarly, packed PE binary image 24 executing within the
debugging process may utilize a GetProcAddress API call to
find the locations of necessary API’s (application program-
ming interfaces). Setting 164 one or more breakpoints asso-
ciated with a GetProcAddress API call may result in a call-
back to automated unpacking process 14 when executing
packed PE binary image 24 loads the addresses of necessary
APT’s. In response to the breakpoint callback associated with
a GetProcAddress API call, automated unpacking process 14
may collect 154 the API addresses being located by executing
packed PE binary image 24. Executing packed PE binary
image 24 may call GetProcAddress API at two locations, e.g.,
for string API locating and ordinal API locating. Automated
unpacking process 14 may set 164 a breakpoint associated
with each GetProcAddress API call. Automated unpacking
process 14 may add the locations of API’s located by the
GetProcAddress API calls to the last collected dynamic link
library.

Automated unpacking process 14 may copy 156 a
debugged PE file from memory (e.g., RAM) to a computer
readable medium, such as storage device 18. Once packed PE
binary image 24, executing within the debugging environ-
ment, reaches the original entry point of the executable file
embodied therein, unpacking of the file may be substantially
complete. That is, the file may be decompressed and/or
decrypted, or the like (depending upon the nature of the
protections associated with packed PE binary image 24). As
such, at this point an unpacked PE file may reside in memory
associated with computing device 16 (e.g., PE in memory 26,
shown in FIG. 1). Automated unpacking process 14 may copy
unpacked PE in memory 26, e.g., to a file residing on storage
medium 18. As such, automated unpacking process 14 may
create stored PE 28, which may be at least a portion of an
unpacked portable executable file based upon, at least in part,
packed PE binary image 24.

Automated unpacking process 14 may paste 166 one or
more of an import address table, based upon, at least in part,
the collected 154 import address table data, and a relocation
table, based upon, at least in part, the collected 154 relocation
table data into the debugged portable executable file (e.g.,
stored PE 28). For example, automated unpacking process 14
may construct one or more of an import address table and a
relocation table based upon, at least in part, the import address
table data and the relocation table data collected 154 by
automated unpacking process 14 during execution 152 of the
debugging process (e.g., which may include executing
packed PE binary image 24 within a debugging environment).

Pasting 166 one or more of an import address table, based
upon, at least in part, collected 154 import address table data,
and a relocation table, based upon, at least in part, collected
154 relocation table data into the debugged portable execut-
able file (e.g., stored PE 28) may include adding 168 a new
section to the debugged portable executable file. For example,
stored PE 28 may not include a section for an import address
table and/or a section for a relocation table. Accordingly,
automated unpacking process 14 may make space for an
import address table and/or a relocation table within stored
PE 28 (e.g., by adding 168 an appropriate section within
stored PE 28 for an import address table and/or a relocation
table). Automated unpacking process 14 may then paste 166
the import address table and/or the relocation table into the
appropriate locations of stored PE 28.

Once the import address table and/or the relocation table
have been pasted 166 into stored PE 28, automated unpacking

10

15

20

25

30

35

40

45

50

55

60

65

14

process 14 may realign 170 the debugged PE file (e.g., stored
PE 28). Generally, realigning 170 the debugged PE file may
include compacting the file and verifying that the file is a valid
image, e.g., which may include verifying that the physical
sizes of the individual PE sections of the file are correct and as
small as possible. Additionally, automated unpacking process
14 may make all section attributes of the debugged PE file
(e.g., stored PE 28) read, write, and execute. As such, auto-
mated unpacking process 14 may create a valid PE file that
may substantially resemble packed PE binary image 24 prior
to packing (i.e., prior to modifying the file with software
protections and/or compression).
With the unpacking process complete, automated unpack-
ing process 14 may terminate 158 debugging of packed PE
binary image 25 at the original entry point.
While various discrete processes have been discussed
herein above, such separate discussion is intended for ease of
explanation. The various discrete processes (and/or portions
thereof) may include modules of a larger application that may
interoperate with one another. Additionally, the various fea-
tures and steps of the processes may be utilized in combina-
tion with features and steps of other processes described
herein. Accordingly, the present disclosure should not be
construed as being limited to the discrete processes as
described above.
A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made. Accordingly, other implementations are within
the scope of the following claims.
What is claimed is:
1. A computer implemented method comprising:
setting, by a computing device, a debugging breakpoint at
an original entry point address of a packed portable
executable file, wherein the original entry point includes
a first instruction of executable code before the packed
portable executable file was protected;
executing, by the computing device, a debugging process
for the packed portable executable file to obtain a
debugged portable executable file in memory;

collecting, by the computing device, one or more of import
address table data and relocation table data during
execution of the debugging process for the packed por-
table executable file by setting one or more debugging
breakpoints associated with a LoadLibrary call, a Get-
ModuleHandle call, and each of a plurality of GetPro-
cAddress calls;

adding a new section to the debugged portable executable

file;
pasting into the debugged portable executable file in the
new section one or more of an import address table ofthe
import table data and a relocation table of the relocation
table data collected during execution of the debugging
process for the packed portable executable file;

copying, by the computing device, the debugged portable
executable file in memory to a storage medium; and

terminating, by the computing device, the debugging pro-
cess at the original entry point.

2. The computer implemented method of claim 1, further
comprising determining, by the computing device, the origi-
nal entry point address of the packed portable executable file
based upon, at least in part, ImageBase field data of the
packed portable executable file and AddressOfEntryPoint
data of the packed portable executable file.

3. The computer implemented method of claim 1, further
comprising initializing, by the computing device, the debug-
ging process including creating a debugging process based
upon, at least in part, the packed portable executable file.

US 9,361,173 B2

15

4. The computer implemented method of claim 1, further
comprising realigning, by the computing device, the
debugged portable executable file.

5. A computer program product comprising a non-transi-
tory computer readable medium having a plurality of instruc-
tions stored thereon, which, when executed by a processor,
cause the processor to perform operations comprising:

setting a debugging breakpoint at an original entry point

address of a packed portable executable file, wherein the
original entry point includes a first instruction of execut-
able code before the packed portable executable file was
protected;

executing a debugging process for the packed portable

executable file to obtain a debugged portable executable
file in memory;

collecting one or more of import address table data and

relocation table data during execution of the debugging
process for the packed portable executable file by setting
one or more debugging breakpoints associated with a
LoadLibrary call, a GetModuleHandle call, and each of
a plurality of GetProcAddress calls;

adding a new section to the debugged portable executable

file;
pasting into the debugged portable executable file in the
new section one or more of an import address table of the
import table data and a relocation table of the relocation
table data collected during execution of the debugging
process for the packed portable executable file;

copying the debugged portable executable file in memory
to a storage medium; and

terminating the debugging process at the original entry

point.

6. The computer program product of claim 5, further com-
prising instructions for determining the original entry point
address of the packed portable executable file based upon, at
least in part, ImageBase field data of the packed portable
executable file and AddressOfEntryPoint data of the packed
portable executable file.

7. The computer program product of claim 5, further com-
prising instructions for initializing the debugging process
including creating a debugging process based upon, at leastin
part, the packed portable executable file.

8. The computer program product of claim 5, further com-
prising instructions for realigning the debugged portable
executable file.

9. A system comprising:

a processor;

a memory coupled with the processor;

a first software module executable by the processor and the

memory, the first software module configured to set a

5

15

20

25

30

40

45

16

debugging breakpoint at an original entry point address
of a packed portable executable file, wherein the original
entry point includes a first instruction of executable code
before the packed portable executable file was protected;

a second software module executable by the processor and
the memory, the second software module configured to
execute a debugging process for the packed portable
executable file to obtain a debugged portable executable
file in memory;

a third software module executable by the processor and
the memory, the third software module configured to
collect one or more of import address table data and
relocation table data during execution of the debugging
process for the packed portable executable file by setting
one or more debugging breakpoints associated with a
LoadLibrary call, a GetModuleHandle call, and each of
aplurality of GetProcAddress calls, add a new section to
the debugged portable executable file, and paste into the
debugged portable executable file in the new section one
or more of an import address table of the import table
data and a relocation table of the relocation table data
collected during execution of the debugging process for
the packed portable executable file;

a fourth software module executable by the processor and
the memory, the fourth software module configured to
copy the debugged portable executable file in memory to
a storage medium; and

a fifth software module executable by the processor and the
memory, the fifth software module configured to termi-
nate the debugging process at the original entry point.

10. The system of claim 9, further comprising a sixth
software module executable by the processor and the
memory, the sixth software module configured to determine
the original entry point address of the packed portable execut-
able file based upon, at least in part, ImageBase field data of
the packed portable executable file and AddressOfEntryPoint
data of the packed portable executable file.

11. The system of claim 9, further comprising a seventh
software module executable by the processor and the
memory, the seventh software module configured to initialize
the debugging process including creating a debugging pro-
cess based upon, at least in part, the packed portable execut-
able file.

12. The system of claim 9, further comprising a ninth
software module executable by the processor and the
memory, the ninth software module configured to realign the
debugged portable executable file.

#* #* #* #* #*

